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Abstract
The transport of the potential vorticity gradient ∇q along surfaces of constant
potential temperature θ is investigated for the stratified Euler, Navier–Stokes
and hydrostatic primitive equations of the oceans and atmosphere, in terms of
the divergence-less flux vector B = ∇Q(q) × ∇θ , for any smooth function Q
of the potential vorticity q. The flux vector B is shown to satisfy a transport
equation reminiscent of that for magnetic field flux in magnetohydrodynamics.
The result may apply to satellite observations of potential vorticity and potential
temperature at the tropopause.

PACS numbers: 47.10.−g, 47.10.−A, 92.60.Aa, 92.60.Xg

1. Introduction

Potential vorticity (PV) is believed to be a particularly significant quantity in the dynamics of
the atmosphere and the oceans [1, 2]. For an incompressible fluid the PV density is defined as
q = ω · ∇θ, where ω = curl u is the vorticity for a fluid with a divergence-less velocity field
u and θ is the potential temperature. This communication exposes a mechanism for creating
the large gradients in potential vorticity density ∇q. Its discussion is based on the geometric
properties of transport of intersections of level sets of the quantities q and θ encoded in the
vector B = ∇Q(q) × ∇θ which turns out to obey an evolution equation of the form1

∂tB − curl(U × B) = D. (1.1)

Here, the vector field U is formally a transport velocity and will be derived explicitly below
in several different cases. The quantity D expresses the rate of change of the flux of B in a
frame moving with velocity U . When D = 0, the flux of B is said to be frozen into the flow
with velocity U = u. The Euler equations for the stretching and folding of vorticity, and
the ideal MHD equations for the frozen-in transport of the flux of divergence-free magnetic
field, both take the form (1.1) with D = 0 (see [3–5]). However, the vector B turns out to be

1 The vector B = ∇Q(q) × ∇θ has been discussed in [3–5] and should not be confused with the cross product
∇B × ∇θ considered in [6], in which the scalar B is a steady Bernoulli function.
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Figure 1. A typical snapshot taken from an analysis of ECMWF data (every 6 h   of the    Northern  
Hemisphere [7] shows contours of potential temperature θ on a level set of potential vorticity q = 2
located near the tropopause. Note that high gradients of θ lie at the sharp interfaces of the contours.

(This figure is in colour only in the electronic version)

a wise choice even with dissipation: the vorticity dynamics of the Navier–Stokes equations
with viscosity and the magnetic field evolution in MHD with resistivity, both take the form
of equation (1.1) but, because D �= 0, the corresponding fields are no longer frozen into the
flow. Figure 1 shows (model assimilated) satellite data for contours of potential temperature
θ on the constant level surface of potential vorticity q = 2, which lies near the tropopause.
See [7] for animations of this data in frames taken every 6 h. In these animations, the
evolution of the contours of θ on a level set of potential vorticity q = 2 is seen: its appearance
suggests the stirring of one liquid in another by stretching and folding, such as cream in black
coffee.

The object of the present work is to derive exact equations of the form (1.1) for the
evolution of the intersections of level sets of q and θ , in which we will find that D is given by
the divergence-less vector

D = −∇[qQ′(q)div U] × ∇θ, (1.2)

for any choice of the smooth function Q, and the vector U will be derived in several cases.
Equations (1.1) and (1.2) are first derived in section 2 in the narrower setting of the Euler

and Navier–Stokes equations. In section 3 the corresponding results are derived for the viscous
hydrostatic primitive equations (HPE), which are commonly used in numerical simulations of
the weather, climate and oceans. The stretching and folding mechanism inherent in (1.1) in
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B
θ = const

q = const

∇θ↗

∇q ↖

Figure 2. For the incompressible Euler equations in three dimensions, the vectorB = ∇Q(q)×∇θ

is tangent to the curve defined by the intersection of the two surfaces q = const and θ = const.

the context of the viscous HPE may have some application to potentially rapid growth of ∇q

in the atmosphere and oceans, where the occurrence of extreme events is of interest for the
prediction of variability of the climate. In fact it has recently been shown by Cao and Titi [8]
that the solutions of the viscous HPE remain regular (see also [9]). It follows that if extreme
events do occur in solutions of HPE, then these must actually be smooth at sufficiently small
scales. Conversely, HPE dynamics, although now known to be regular, may still produce
extreme events due to the allowed intense stretching and folding of ∇q and ∇θ under the
dynamics of equations (1.1) and (1.2).

2. Summary of main results for the Euler and Navier–Stokes equations

Consider the dimensionless form of the incompressible 3D Euler and Navier–Stokes equations

Du

Dt
+ θ k̂ = Re−1�u − ∇p,

D

Dt
= ∂t + u ·∇, (2.1)

where the temperature θ(x, t) evolves according to

Dθ

Dt
= (σRe)−1�θ. (2.2)

Information about ∇θ is needed to determine how θ(x, t) might accumulate into large local
concentrations. The traditional approach is to study this question through the dynamics of the
potential vorticity, defined by (ω = curl u is the vorticity)

q := ω · ∇θ. (2.3)

The main results for the incompressible Euler and Navier–Stokes equations are
summarized in the following.

Theorem 1. In the cases below, q and θ satisfy

∂tq + div(qU) = 0, ∂t θ + U · ∇θ = 0, (2.4)

and, with Q(q) as any smooth function of q, the divergence-free flux vector

B = ∇Q(q) × ∇θ, (2.5)

satisfies the stretching relation

∂tB − curl(U × B) = D. (2.6)

The divergence-less vector D in (2.6) is given by D = −∇(qQ′div U) × ∇θ .

(1) For the incompressible Euler equations, U = u and thus D = 0. In this case Dq/Dt = 0,
so the intersections of the level sets of q and θ shown in figure 2 move together with the
fluid velocity, u;
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(2) For the incompressible Navier–Stokes equations, U is defined as

q(U − u) = −Re−1{�u × ∇θ + σ−1ω�θ}, q �= 0. (2.7)

Moreover, for any surface S(U) moving with the flow U , one finds

d

dt

∫
S(U)

B · dS =
∫

S(U)

D · dS. (2.8)

Remark. The three-dimensional incompressible Navier–Stokes equations possess only
Leray’s weak solutions, while the Euler equations do not even possess these. Thus, the
manipulations used in deriving (2.4)–(2.8) should be considered as purely formal.

Sketch proof of (2.4)–(2.8). The derivation of (2.4) follows the same standard manipulations
that appear in the elegant classic proof of Ertel’s theorem [10], namely

Dq

Dt
=

(
Dω

Dt
− ω · ∇u

)
· ∇θ + ω ·∇

(
Dθ

Dt

)

= (Re−1�ω − ∇⊥θ) · ∇θ + ω ·∇((σ Re)−1�θ)

= div(Re−1�u × ∇θ + (σ Re)−1ω�θ), (2.9)

where ∇⊥θ = ∇θ × k̂. The scalar product ∇⊥θ · ∇θ = 0 and the rest of the terms on the
right-hand side of (2.9) have been regrouped as a divergence. On using div u = 0 one may
define U through the equation

∂tq = −div(qu − Re−1�u × ∇θ − (σRe)−1ω�θ) =: −div(qU), (2.10)

in which case div U �= 0, and

(∂t + U · ∇)θ = ∂tθ + {u − q−1Re−1[�u × ∇θ + σ−1ω�θ ]} · ∇θ = 0. (2.11)

The flux J = q U was first introduced by Haynes and McIntyre in the context of their
‘impermeability theorem’ [11, 12]. There have been objections that U is not a physical
velocity [13, 14], which have been answered by McIntyre in [15] but in the context of this
paper U has been employed solely as a notational device. The remarkably simple form of
(2.6) for the incompressible Euler case, in which U = u and D = 0, was derived first in [3–5].
Two versions of the proof of (2.6) are given in the appendix, the first using Lie derivatives and
the second using conventional vector identities. �

The right-hand side of (2.6) occurs because q is not a scalar function; rather it is a density
(a volume form). However, because div u = 0 for the incompressible Euler case, it follows
that B satisfies

DB
Dt

= B · ∇u (2.12)

which is also the standard stretching equation for vorticity ω on replacing B with ω. The
squared magnitude |B|2 satisfies

1

2

D

Dt
|B|2 = B · SB ≈ λ(S)|B|2, (2.13)

where λS(x, t) is an estimate for an eigenvalue of the rate of strain matrix S. Alignment
of B with a positive (negative) eigenvector of S will produce exponential growth (decay),
thus mimicking the stretching mechanism that produces the large vorticity intensities that
develop locally in turbulence. Ohkitani [16] has studied Clebsch-decomposed solutions for
ω = ∇f × ∇g, where Df/Dt = 0 and Dg/Dt = 0.
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Remark. Moffatt suggested the analogy between the magnetic field in a conducting fluid and
the vorticity in an incompressible Euler flow [17] (see also [18]). Equation (2.12) continues
this analogy. Moffatt’s detailed discussion of the topology of magnetic field lines is based
on the concept of helicity that requires the existence of a vector potential A that satisfies
B = curl A, where

A = 1
2 (Q∇θ − θ∇Q) + ∇ψ. (2.14)

The helicity H that results from this definition,

H =
∫

V

A · B dV =
∫

V

div(ψB) dV =
∮

∂V

ψB · n̂ dS, (2.15)

measures the winding number, or knottedness of the lines of the divergence-free vector field
B. This helicity would vanish for homogeneous boundary conditions. However, if realistic
topographies were taken into account, then the possibility for H �= 0 would exist. The
boundaries may therefore be an important generating source for helicity, thus allowing the
formation of knots and linkages in the B-field.

3. The case of the hydrostatic primitive equations

Many simulations of weather, climate and ocean circulation employ the hydrostatic version
of the primitive equations (denoted as HPE). The major difference of HPE from the Navier–
Stokes equations lies in the exclusion of the vertical velocity component w(x, y, z, t) in the
hydrostatic velocity field2

v(x, y, z, t) = (u, v, 0). (3.1)

However, this vertical component does appear in the transport velocity field V = (u, v, εw),
where ε is the Rossby number. The velocity field v in (3.1) obeys the motion equation

ε(∂t + V · ∇)v + k̂ × v + a0k̂	 = εRe−1�v − ∇p, (3.2)

and is solved in tandem with the incompressibility condition div V = div v + εwz = 0. The
vertical velocity w has no evolution equation; it appears only in V · ∇ and is determined from
the vertical integral of the incompressibility condition div V = 0. The z-derivative of the
pressure field p and the dimensionless temperature 	 enter the problem through the hydrostatic
equation

a0	 + pz = 0, (3.3)

which has been been incorporated into (3.2) as its vertical component. The quantity a0 is a
constant, αa = H/L � 1 is the aspect ratio and Ra is the Rayleigh number, which comes
from the non-dimensionalization of the original equations. By using the vector identity

V · ∇v = −V × ζ + 1
2∇(u2 + v2) (3.4)

in (3.2), the vorticity equation for

ζ = curl v (3.5)

is expressed as

(∂t + V · ∇)ζ = (σ Re)−1�ζ + ζ · ∇V + curl f , (3.6)

where f = −ε−1(k̂ × v + a0k̂	). The dimensionless temperature 	, with a specified heat
transport term h(x, y, z, t), satisfies

(∂t + V · ∇)	 = (σ Re)−1�	 + h. (3.7)

2 The primitive equations as used for weather and climate prediction are defined on a corrected spherical grid.
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Equations (3.6) and (3.7) for HPE correspond to those for the Navier–Stokes equations, with
the additional h-term. Hence, the results in section 2 can be lifted over to HPE by defining

q = ζ · ∇	 and B = ∇Q × ∇	, (3.8)

where Q(q) can be chosen as any smooth function of the potential vorticity q, which itself
obeys the relations

∂tq + div(qU) = 0, q(∂t + U · ∇)	 = 0. (3.9)

Here, the formal transport velocity, U, is defined from the vorticity flux density as

qU = qV − {[Re−1�V + f ] × ∇	 + [(σ Re)−1ζ�	 + h]}. (3.10)

Clearly, U includes the effects of rotation within f and the heat transport term h: moreover,
div U �= 0. As in the case of the Navier–Stokes equations this is not a physical velocity but
is again a convenient mathematical device. Accordingly B in (3.8) evolves according to the
driven stretching relation

∂tB − curl(U × B) = D, (3.11)

where

D = −∇(qQ′(q)div U) × ∇	. (3.12)

This equation is the analogue for HPE of equation (2.4) for the Navier–Stokes case. It implies
that the time rate of change of the flux of B in (3.8) through any surface S that is transported
at formal velocity U is given by

d

dt

∫
S(U)

B · dS =
∫

S(U)

D · dS. (3.13)

In particular, when the U-transported surface is chosen to be a level set of temperature (whose
normal vector is along ∇	) the right-hand side vanishes, as it should to maintain the tangency
of B to such surfaces. This means that the effects of PV gradient flux creation due to the right-
hand side of (3.11) occur only on U-transported surfaces that are not temperature iso-surfaces.

4. Conclusion

The equations for the evolution of the flux of PV gradient B for Navier–Stokes in section 2
and B for HPE in section 3 are the first two main results. Their left-hand sides represent
the familiar flux transport form that governs the stretching processes while the second main
feature is the derivation of the right-hand side D and D-terms; these divergence-less forcing
terms deserve more investigation. Herring et al [19] have performed a computational study of
vortex re-connection in the Navier–Stokes Boussinesq system (2.1) and (2.2). It is possible
that the divergence-less vector D may be the key to understanding this phenomenon with the
left-hand side of (1.1) dominating for early to intermediate times until the effect of D destroys
the frozen-in property. A numerical study of the effect of D may therefore be worthwhile.

In GFD, topography has been found to have some bearing on the nature of the topology
of the B-field, because helicity is generated at boundaries, and this potentially leads to the
formation of knots and linkages in the B-field lines. The atmospheric or oceanic events to
which these knots and linkages would correspond are not wholly clear.

Investigation of steady-state balances of B and its interaction with imposed steady coherent
shear would also be interesting. In fact, analogous investigations of the spatial distribution
of the PV flux are already underway in other contexts and, for example, have recently been
studied via the data analysis of PV fronts at the sea surface (Czaja and Hausmann [20]). We
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hope modern developments in observation and data analysis will soon provide new insight into
the role and magnitude of the dynamical effects and balance effects caused by the transport of
PV gradient flux along temperature iso-surfaces. In this regard, see, for instance, the recent
paper by McWilliams et al [21] for a discussion of filamentary intensification in the ocean by
processes similar to the stretching of B. Likewise, in the atmosphere, the stretching of B and
the associated alignment properties of ∇q and ∇θ are of interest, particularly in the region of
the tropopause, as shown in figure 1.

Finally, the fundamental stretching mechanism in either HPE, or Navier–Stokes is the
term B · ∇U. As already noted, the relation B · (B ·∇U) = B · SB implies that alignment of
B along a positive eigenvector of the rate of strain matrix S (noting that div U �= 0) will lead
to exponential growth in B. Thus, there will be a tendency for B to stretch in these positive
directions within a large coherent vortex. It has long been observed that large-scale vortices
develop plateaus in PV and form steep cliff-like edges at the vortex boundary: see Rhines and
Young [22] and Rhines [23]. As noted above, although the effect of the D-term in (3.11) is
not yet clear, it may play a significant role in the mechanism by which plateaus are formed in
PV profiles, namely by the transport of PV gradient within a region of nonzero PV and along
temperature iso-surfaces. The fact that PV gradient flux can be created along temperature
iso-surfaces and can penetrate any other U-transported surfaces may also help explain the
‘leakage’ or ‘erosion’ of PV gradient that is observed in certain regions of vortex boundaries.
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Appendix. Derivation of equation (2.6)

Given the advective transport equations for temperature and potential vorticity,

Dθ

Dt
= 0,

D

Dt
(q d3x) = (∂tq + u · ∇q + q div u) d3x = 0, (A.1)

the evolution equation (2.6) for the quantity B = ∇Q(q)×∇θ may be derived easily by using
the notation of the exterior derivative (d) and the wedge product (∧):

B · dS = (∇Q(q) × ∇θ) · dS = dQ(q) ∧ dθ. (A.2)

The advective time derivative of the leftmost term in this relation yields

D

Dt

(
B · dS

) = [∂tB − curl(u × B)] · dS along
Dx

Dt
= u. (A.3)

The advective time derivative of the rightmost term in (A.2) yields, using equations (A.1),

D

Dt
(dQ(q) ∧ dθ) = d

(
DQ(q)

Dt
∧ dθ

)
+ dQ(q) ∧ d

(
Dθ

Dt

)

= −d(qQ′ div u) ∧ dθ = D · dS, (A.4)

also along Dx/Dt = u. For incompressible Euler flow, div u = 0 and equation (2.6) arises
by equating the rightmost terms in (A.3) and (A.4). When u is replaced by U for the Navier–
Stokes equations, this yields a non-zero right-hand side because in this case div U �= 0.
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The second version of the proof, with the notation ωU = curl U , is simply a direct
calculation:

Bt = (∇Q)t × (∇θ) + (∇Q) × (∇θ)t

= −∇[(qQ′ div U) + U · ∇Q)] × (∇θ) − (∇Q) × [∇(U · ∇θ)]

= −{∇(qQ′ div U) + U · ∇(∇Q) + (∇Q) · ∇U + (∇Q) × ωU } × (∇θ)

− (∇Q) × {U · ∇(∇θ) + (∇θ) · ∇U + (∇θ) × ωU }
= −∇(qQ′ div U) × ∇θ − U · ∇B + (∇Q)(ωU · ∇θ) − (∇θ)(ωU · ∇Q)

+ (∇θ) × (∇Q · ∇U) − (∇Q) × (∇θ · ∇U)

= curl(u × B) − ∇(qQ′ div U) × ∇θ. (A.5)
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